Warp Factory
  • What is Warp Factory?
  • Overview
    • Installing Warp Factory
    • Workflow
    • Codebase Structure
    • Object Types
    • Frames
  • Examples
    • Metrics
      • M1 - First Metric
      • M2 - Default Metrics
      • M3 - Building a Metric
    • Energy Tensor
      • T1 - First Energy Tensor
      • T2 - Cartoon Methods
      • T3 - GPU Computation
      • T4 - Solver Order
      • T5 - Errors
    • Analysis
      • A1 - Energy Conditions
      • A2 - Metric Scalars
      • A3 - Eval Metric
      • A4 - Momentum Flow
    • Warp Shell
      • W1 Warp Shell Comoving
  • Modules
    • Metrics Module
      • Metric Library
        • metricGet_Minkowski
        • metricGet_Alcubierre
        • metricGet_Lentz
        • metricGet_VanDenBroeck
        • metricGet_WarpShellComoving
        • metricGet_ModifiedTime
        • metricGet_Schwarzschild
      • Metric Functions
        • setMinkowski
        • setMinkowskiThreePlusOne
        • threePlusOneBuilder
        • threePlusOneDecomposer
    • Analyzer Module
      • getMomentumFlowLines
      • doFrameTransfer
      • changeTensorIndex
      • getScalars
      • getEnergyConditions
      • evalMetric
    • Solver Module
      • getEnergyTensor
      • verifyTensor
    • Visualizer Module
      • plotThreePlusOne
      • plotTensor
      • Plot Functions
    • Units Module
  • General
    • Contributing
    • FAQ
    • Citing Warp Factory
Powered by GitBook
On this page
  • Description
  • Method
  • Syntax
  • Input Arguments
  • Output Arguments
  1. Modules
  2. Metrics Module
  3. Metric Library

metricGet_VanDenBroeck

PreviousmetricGet_LentzNextmetricGet_WarpShellComoving

Last updated 1 year ago

Description

Create the Van Den Broeck warp solution in a defined spacetime grid.

Van Den Broeck Metric

The Van Den Broeck solution modifies an Alcubierre geometry in the following way:

ds2=−dt2+B2(rs)[(dx2−vs(t)f(rs)2 dt)2+dy2+dz2]ds^2 = -dt^2+ B^2(r_s)[(dx^2 - v_s(t) f(r_s)^2 \ dt)^2 + dy^2 + dz^2]ds2=−dt2+B2(rs​)[(dx2−vs​(t)f(rs​)2 dt)2+dy2+dz2]

where rsr_srs​ is:

rs=[(x−xs(t))2+y2+z2]1/2r_s = [(x-x_s(t))^2 + y^2 + z^2]^{1/2}rs​=[(x−xs​(t))2+y2+z2]1/2

The added function B(rs)B(r_s)B(rs​)is twice differentiable such that:

B(rs)=1+α  for  rs<RB(r_s) = 1+ \alpha \ \ \text{for} \ \ r_s < RB(rs​)=1+α  for  rs​<R

1<B(rs)≤1+α  for  R~≤rs<R~+Δ~1 < B(r_s) \leq 1 + \alpha \ \ \text{for} \ \ \tilde{R} \leq r_s < \tilde{R} + \tilde{\Delta}1<B(rs​)≤1+α  for  R~≤rs​<R~+Δ~

B(rs)=1  for  R~+Δ~≤rsB(r_s) = 1 \ \ \text{for} \ \ \tilde{R} + \tilde{\Delta} \leq r_sB(rs​)=1  for  R~+Δ~≤rs​

where α\alphaαis a constant and 1+α1 + \alpha1+α is the factor of spatial expansion. The function of f(x)f(x) f(x)must be selected to have the following constraints:

f(rs)=1  for  rs<Rf(r_s) = 1 \ \ \text{for} \ \ r_s < Rf(rs​)=1  for  rs​<R

0<f(rs)≤1  for  R~≤rs<R~+Δ~0 < f(r_s) \leq 1 \ \ \text{for} \ \ \tilde{R} \leq r_s < \tilde{R} + \tilde{\Delta}0<f(rs​)≤1  for  R~≤rs​<R~+Δ~

f(rs)=0  for  R~+Δ~≤rsf(r_s) = 0 \ \ \text{for} \ \ \tilde{R} + \tilde{\Delta} \leq r_sf(rs​)=0  for  R~+Δ~≤rs​

For more details on the Van Den Broeck metric, please read:

Method

The metric is constructed using the parameters of the Van Den Broeck metric in the user-defined spacetime grid parameters. In this setup R1 and sigma1 repersent R~\tilde{R}R~ and Δ~\tilde{\Delta}Δ~ . R2 and sigma2 repersent RRR and Δ\DeltaΔ.

The comoving version of this metric called metricGet_VanDenBroeckComoving has the same inputs but requires that the gridSize along t = 1 and will return the metric in the Galilean comoving frame.

Syntax

[metric] = metricGet_VanDenBroeck(gridSize,worldCenter,v,R1, sigma1 ,R2, sigma2 ,alpha, gridScale)

[metric] = metricGet_VanDenBroeckComoving(gridSize,worldCenter,v,R1, sigma1 ,R2, sigma2 ,alpha, gridScale)

Input Arguments

blue are required inputs.

orange are optional inputs with native default values.

Inputs
Format
Type
Description

gridSize

1x4 array

integer

The size of the world specified as:

worldCenter

1x4 array

double

v

1x1 array

double

Speed of the warp drive, given as a factor of c.

R1

1x1 array

double

Radius of the spatial expansion.

sigma1

1x1 array

double

Thickness factor of the spatial expansion. Note this uses the Alcubierre shape function.

R2

1x1 array

double

Radius of the shift vector.

sigma2

1x1 array

double

Thickness factor of the shift vector. Note this uses the Alcubierre shape function.

alpha

1x1 array

double

Spatial expansion factor

gridScale

1x4 array

double

Unit scaling factor of the grid dimensions defined relative to gridSize. This determines the resolution of the grid along each dimension. Specified as:

The default value is [1, 1, 1, 1].

Output Arguments

Outputs
Format
Type
Description

metric

struct

object

Van Den Broeck solution returned as the metric tensor object.

The center of the world, which defines the center of as a 4-vector, specified as:

[t,x,y,z][t, x, y, z][t,x,y,z]
rsr_srs​
[t,x,y,z][t,x,y,z][t,x,y,z]
[tscale,xscale,yscale,zscale][t_{scale}, x_{scale}, y_{scale}, z_{scale}][tscale​,xscale​,yscale​,zscale​]
A `warp drive' with more reasonable total energy requirementsarXiv.org
Logo