metricGet_VanDenBroeck

Description

Create the Van Den Broeck warp solution in a defined spacetime grid.

Van Den Broeck Metric

The Van Den Broeck solution modifies an Alcubierre geometry in the following way:

ds2=dt2+B2(rs)[(dx2vs(t)f(rs)2 dt)2+dy2+dz2]ds^2 = -dt^2+ B^2(r_s)[(dx^2 - v_s(t) f(r_s)^2 \ dt)^2 + dy^2 + dz^2]

where rsr_s is:

rs=[(xxs(t))2+y2+z2]1/2r_s = [(x-x_s(t))^2 + y^2 + z^2]^{1/2}

The added function B(rs)B(r_s)is twice differentiable such that:

B(rs)=1+α  for  rs<RB(r_s) = 1+ \alpha \ \ \text{for} \ \ r_s < R

1<B(rs)1+α  for  R~rs<R~+Δ~1 < B(r_s) \leq 1 + \alpha \ \ \text{for} \ \ \tilde{R} \leq r_s < \tilde{R} + \tilde{\Delta}

B(rs)=1  for  R~+Δ~rsB(r_s) = 1 \ \ \text{for} \ \ \tilde{R} + \tilde{\Delta} \leq r_s

where α\alphais a constant and 1+α1 + \alpha is the factor of spatial expansion. The function of f(x)f(x) must be selected to have the following constraints:

f(rs)=1  for  rs<Rf(r_s) = 1 \ \ \text{for} \ \ r_s < R

0<f(rs)1  for  R~rs<R~+Δ~0 < f(r_s) \leq 1 \ \ \text{for} \ \ \tilde{R} \leq r_s < \tilde{R} + \tilde{\Delta}

f(rs)=0  for  R~+Δ~rsf(r_s) = 0 \ \ \text{for} \ \ \tilde{R} + \tilde{\Delta} \leq r_s

For more details on the Van Den Broeck metric, please read:

Method

The metric is constructed using the parameters of the Van Den Broeck metric in the user-defined spacetime grid parameters. In this setup R1 and sigma1 repersent R~\tilde{R} and Δ~\tilde{\Delta} . R2 and sigma2 repersent RR and Δ\Delta.

The comoving version of this metric called metricGet_VanDenBroeckComoving has the same inputs but requires that the gridSize along t = 1 and will return the metric in the Galilean comoving frame.

Syntax

[metric] = metricGet_VanDenBroeck(gridSize,worldCenter,v,R1, sigma1 ,R2, sigma2 ,alpha, gridScale)

[metric] = metricGet_VanDenBroeckComoving(gridSize,worldCenter,v,R1, sigma1 ,R2, sigma2 ,alpha, gridScale)

Input Arguments

blue are required inputs.

orange are optional inputs with native default values.

Inputs
Format
Type
Description

gridSize

1x4 array

integer

The size of the world specified as:

[t,x,y,z][t, x, y, z]

worldCenter

1x4 array

double

The center of the world, which defines the center of rsr_s as a 4-vector, specified as:

[t,x,y,z][t,x,y,z]

v

1x1 array

double

Speed of the warp drive, given as a factor of c.

R1

1x1 array

double

Radius of the spatial expansion.

sigma1

1x1 array

double

Thickness factor of the spatial expansion. Note this uses the Alcubierre shape function.

R2

1x1 array

double

Radius of the shift vector.

sigma2

1x1 array

double

Thickness factor of the shift vector. Note this uses the Alcubierre shape function.

alpha

1x1 array

double

Spatial expansion factor

gridScale

1x4 array

double

Unit scaling factor of the grid dimensions defined relative to gridSize. This determines the resolution of the grid along each dimension. Specified as:

[tscale,xscale,yscale,zscale][t_{scale}, x_{scale}, y_{scale}, z_{scale}]

The default value is [1, 1, 1, 1].

Output Arguments

Outputs
Format
Type
Description

metric

struct

object

Van Den Broeck solution returned as the metric tensor object.

Last updated