metricGet_VanDenBroeck
Last updated
Last updated
Create the Van Den Broeck warp solution in a defined spacetime grid.
For more details on the Van Den Broeck metric, please read:
The comoving version of this metric called metricGet_VanDenBroeckComoving
has the same inputs but requires that the gridSize
along t = 1 and will return the metric in the Galilean comoving frame.
[
metric
] = metricGet_VanDenBroeck(
gridSize
,
worldCenter
,
v
,
R1
,
sigma1
,
R2
,
sigma2
,
alpha
,
gridScale
)
[
metric
] = metricGet_VanDenBroeckComoving(
gridSize
,
worldCenter
,
v
,
R1
,
sigma1
,
R2
,
sigma2
,
alpha
,
gridScale
)
blue are required inputs.
orange are optional inputs with native default values.
gridSize
1x4 array
integer
The size of the world specified as:
worldCenter
1x4 array
double
v
1x1 array
double
Speed of the warp drive, given as a factor of c.
R1
1x1 array
double
Radius of the spatial expansion.
sigma1
1x1 array
double
Thickness factor of the spatial expansion. Note this uses the Alcubierre shape function.
R2
1x1 array
double
Radius of the shift vector.
sigma2
1x1 array
double
Thickness factor of the shift vector. Note this uses the Alcubierre shape function.
alpha
1x1 array
double
Spatial expansion factor
gridScale
1x4 array
double
Unit scaling factor of the grid dimensions defined relative to gridSize
. This determines the resolution of the grid along each dimension. Specified as:
The default value is [1, 1, 1, 1].
metric
struct
object
Van Den Broeck solution returned as the metric tensor object.
The metric is constructed using the parameters of the Van Den Broeck metric in the user-defined spacetime grid parameters. In this setup R1
and sigma1
repersent and . R2
and sigma2
repersent and .
The center of the world, which defines the center of as a 4-vector, specified as: