Warp Factory
  • What is Warp Factory?
  • Overview
    • Installing Warp Factory
    • Workflow
    • Codebase Structure
    • Object Types
    • Frames
  • Examples
    • Metrics
      • M1 - First Metric
      • M2 - Default Metrics
      • M3 - Building a Metric
    • Energy Tensor
      • T1 - First Energy Tensor
      • T2 - Cartoon Methods
      • T3 - GPU Computation
      • T4 - Solver Order
      • T5 - Errors
    • Analysis
      • A1 - Energy Conditions
      • A2 - Metric Scalars
      • A3 - Eval Metric
      • A4 - Momentum Flow
    • Warp Shell
      • W1 Warp Shell Comoving
  • Modules
    • Metrics Module
      • Metric Library
        • metricGet_Minkowski
        • metricGet_Alcubierre
        • metricGet_Lentz
        • metricGet_VanDenBroeck
        • metricGet_WarpShellComoving
        • metricGet_ModifiedTime
        • metricGet_Schwarzschild
      • Metric Functions
        • setMinkowski
        • setMinkowskiThreePlusOne
        • threePlusOneBuilder
        • threePlusOneDecomposer
    • Analyzer Module
      • getMomentumFlowLines
      • doFrameTransfer
      • changeTensorIndex
      • getScalars
      • getEnergyConditions
      • evalMetric
    • Solver Module
      • getEnergyTensor
      • verifyTensor
    • Visualizer Module
      • plotThreePlusOne
      • plotTensor
      • Plot Functions
    • Units Module
  • General
    • Contributing
    • FAQ
    • Citing Warp Factory
Powered by GitBook
On this page
  • Description
  • Method
  • Syntax
  • Input Arguments
  • Output Arguments
  1. Modules
  2. Metrics Module
  3. Metric Library

metricGet_Lentz

Lentz warp solution implementation

PreviousmetricGet_AlcubierreNextmetricGet_VanDenBroeck

Last updated 1 year ago

Description

Create a version of the Lentz warp solution in a defined spacetime grid.

Lentz Metric

The Lentz solution takes a soliton approach which solves for a potential that satisfies a linear wave equation in spherical coordinates:

∂x2ϕ+∂y2ϕ−2vh2∂z2ϕ=ρ\partial_x^2 \phi + \partial_y^2 \phi - \frac{2}{v^2_h} \partial_z^2 \phi = \rho∂x2​ϕ+∂y2​ϕ−vh2​2​∂z2​ϕ=ρ

where the shift vector β\betaβ is given in two dimensions where:

βi=∂iϕ\beta_i = \partial_i \phiβi​=∂i​ϕ

The specific solution that Lentz uses has the shift vectors in xxx and zzz found in Green's form:

βz=14vh∫dx′ρ(z−∣Δx∣vh,∣x′∣+∣y∣)\beta_z = \frac{1}{4v_h}\int dx^\prime \rho \left( z - \frac{|\Delta x|}{v_h}, |x^\prime|+|y| \right)βz​=4vh​1​∫dx′ρ(z−vh​∣Δx∣​,∣x′∣+∣y∣)

βx=14vh2∫dx′sign(Δx)ρ(z−∣Δx∣vh,∣x′∣+∣y∣)\beta_x = \frac{1}{4v_h^2}\int dx^\prime \text{sign}(\Delta x) \rho \left( z - \frac{|\Delta x|}{v_h}, |x^\prime|+|y| \right)βx​=4vh2​1​∫dx′sign(Δx)ρ(z−vh​∣Δx∣​,∣x′∣+∣y∣)

For more details on the Lentz metric, please read:

Method

The comoving version of this metric called metricGet_LentzComoving has the same inputs but requires that the gridSize along t = 1 and will return the metric in the Galilean comoving frame.

Syntax

[metric] = metricGet_Lentz(gridSize,worldCenter,v,scale, gridScale)

[metric] = metricGet_LentzComoving(gridSize,worldCenter,v,scale, gridScale)

Input Arguments

blue are required inputs.

orange are optional inputs with native default values.

Inputs
Format
Type
Description

gridSize

1x4 array

integer

The size of the world specified as:

worldCenter

1x4 array

double

The center of the world, which defines the center of the Lentz shape template as a 4-vector, specified as:

v

1x1 array

double

Speed of the warp drive, given as a factor of c.

scale

1x1 array

double

Scaling parameter for the Lentz solution template. Default value is largest gridSize/7.

gridScale

1x4 double

double

Unit scaling factor of the grid dimensions defined relative to gridSize. This determines the resolution of the grid along each dimension. Specified as:

The default value is [1, 1, 1, 1].

Output Arguments

Outputs
Format
Type
Description

metric

struct

object

Lentz solution returned as the metric tensor object.

The metric is constructed using a representation of the Lentz metric as described in the first publication. An internal function in the main metric constructor called getWarpFactorByRegion is called which returns a map of the shift vector values as used in Figure 2 of . This function scales the shape from the Lentz solution using the scale parameter.

[t,x,y,z][t, x, y, z][t,x,y,z]
[t,x,y,z][t,x,y,z][t,x,y,z]
[tscale,xscale,yscale,zscale][t_{scale}, x_{scale}, y_{scale}, z_{scale}][tscale​,xscale​,yscale​,zscale​]
https://arxiv.org/abs/2006.07125
LogoBreaking the Warp Barrier: Hyper-Fast Solitons in...arXiv.org