Warp Factory
  • What is Warp Factory?
  • Overview
    • Installing Warp Factory
    • Workflow
    • Codebase Structure
    • Object Types
    • Frames
  • Examples
    • Metrics
      • M1 - First Metric
      • M2 - Default Metrics
      • M3 - Building a Metric
    • Energy Tensor
      • T1 - First Energy Tensor
      • T2 - Cartoon Methods
      • T3 - GPU Computation
      • T4 - Solver Order
      • T5 - Errors
    • Analysis
      • A1 - Energy Conditions
      • A2 - Metric Scalars
      • A3 - Eval Metric
      • A4 - Momentum Flow
    • Warp Shell
      • W1 Warp Shell Comoving
  • Modules
    • Metrics Module
      • Metric Library
        • metricGet_Minkowski
        • metricGet_Alcubierre
        • metricGet_Lentz
        • metricGet_VanDenBroeck
        • metricGet_WarpShellComoving
        • metricGet_ModifiedTime
        • metricGet_Schwarzschild
      • Metric Functions
        • setMinkowski
        • setMinkowskiThreePlusOne
        • threePlusOneBuilder
        • threePlusOneDecomposer
    • Analyzer Module
      • getMomentumFlowLines
      • doFrameTransfer
      • changeTensorIndex
      • getScalars
      • getEnergyConditions
      • evalMetric
    • Solver Module
      • getEnergyTensor
      • verifyTensor
    • Visualizer Module
      • plotThreePlusOne
      • plotTensor
      • Plot Functions
    • Units Module
  • General
    • Contributing
    • FAQ
    • Citing Warp Factory
Powered by GitBook
On this page
  • Description
  • Method
  • Syntax
  • Input Arguments
  • Output Arguments
  1. Modules
  2. Metrics Module
  3. Metric Library

metricGet_Alcubierre

Standard Alcubierre metric setup

PreviousmetricGet_MinkowskiNextmetricGet_Lentz

Last updated 1 year ago

Description

Create the Alcubierre warp solution in a defined spacetime grid.

Alcubierre Metric

The Alcubierre metric uses only a single shift vector which is defined by a shape function f(rs)f(r_s)f(rs​):

f(rs)=tanh⁡(σ(rs+R))−tanh⁡(σ(rs−R))2tanh⁡(σR)f(r_s) = \frac{\tanh(\sigma(r_s + R)) - \tanh(\sigma(r_s - R))}{2 \tanh (\sigma R)}f(rs​)=2tanh(σR)tanh(σ(rs​+R))−tanh(σ(rs​−R))​

where rsr_srs​is the coordinate center defined as:

rs=[(x−xs(t))2+y2+z2]1/2r_s = [(x-x_s(t))^2 + y^2 + z^2]^{1/2}rs​=[(x−xs​(t))2+y2+z2]1/2

where xs(t)x_s(t)xs​(t) moves through spacetime at a rate of vvv along xxx. The shift vector β1\beta_1β1​ is then defined using the shape function:

β1=v f(rs)\beta_1 = v \ f(r_s)β1​=v f(rs​)

The metric is then given (in the line element representation) by:

ds2=−1+v2f(rs)2 dt2+2vf(rs) dxdt+dx2+dy2+dz2ds^2 = -1+v^2 f(r_s)^2 \ dt^2 + 2 v f(r_s) \ dx dt + dx^2 + dy^2 + dz^2ds2=−1+v2f(rs​)2 dt2+2vf(rs​) dxdt+dx2+dy2+dz2

For more details on the Alcubierre metric, please read:

Method

The metric is constructed using the parameters of the Alcubierre metric in the user-defined spacetime grid parameters.

The comoving version of this metric called metricGet_AlcubierreComoving has the same inputs but requires that the gridSize along t = 1 and will return the metric in the Galilean comoving frame.

Syntax

[metric] = metricGet_Alcubierre(gridSize,worldCenter,v,R,sigma, gridScale)

[metric] = metricGet_AlcubierreComoving(gridSize,worldCenter,v,R,sigma, gridScale)

Input Arguments

blue are required inputs.

orange are optional inputs with native default values.

Inputs
Format
Type
Description

gridSize

1x4 array

integer

The size of the world specified as:

worldCenter

1x4 array

double

v

1x1 array

double

Speed of the warp drive, given as a factor of c.

R

1x1 array

double

Radius of the warp bubble.

sigma

1x1 array

double

Width parameter of the warp bubble.

gridScale

1x4 array

double

Unit scaling factor of the grid dimensions defined relative to gridSize. This determines the resolution of the grid along each dimension. Specified as:

The default value is [1, 1, 1, 1].

Output Arguments

Outputs
Format
Type
Description

metric

struct

object

Alcubierre solution returned as the metric tensor object.

The center of the world, which defines the center of as a 4-vector, specified as:

[t,x,y,z][t, x, y, z][t,x,y,z]
rsr_srs​
[t,x,y,z][t,x,y,z][t,x,y,z]
[tscale,xscale,yscale,zscale][t_{scale}, x_{scale}, y_{scale}, z_{scale}][tscale​,xscale​,yscale​,zscale​]
LogoThe warp drive: hyper-fast travel within general relativityarXiv.org