Warp Factory
  • What is Warp Factory?
  • Overview
    • Installing Warp Factory
    • Workflow
    • Codebase Structure
    • Object Types
    • Frames
  • Examples
    • Metrics
      • M1 - First Metric
      • M2 - Default Metrics
      • M3 - Building a Metric
    • Energy Tensor
      • T1 - First Energy Tensor
      • T2 - Cartoon Methods
      • T3 - GPU Computation
      • T4 - Solver Order
      • T5 - Errors
    • Analysis
      • A1 - Energy Conditions
      • A2 - Metric Scalars
      • A3 - Eval Metric
      • A4 - Momentum Flow
    • Warp Shell
      • W1 Warp Shell Comoving
  • Modules
    • Metrics Module
      • Metric Library
        • metricGet_Minkowski
        • metricGet_Alcubierre
        • metricGet_Lentz
        • metricGet_VanDenBroeck
        • metricGet_WarpShellComoving
        • metricGet_ModifiedTime
        • metricGet_Schwarzschild
      • Metric Functions
        • setMinkowski
        • setMinkowskiThreePlusOne
        • threePlusOneBuilder
        • threePlusOneDecomposer
    • Analyzer Module
      • getMomentumFlowLines
      • doFrameTransfer
      • changeTensorIndex
      • getScalars
      • getEnergyConditions
      • evalMetric
    • Solver Module
      • getEnergyTensor
      • verifyTensor
    • Visualizer Module
      • plotThreePlusOne
      • plotTensor
      • Plot Functions
    • Units Module
  • General
    • Contributing
    • FAQ
    • Citing Warp Factory
Powered by GitBook
On this page
  • Description
  • Method
  • Syntax
  • Input Arguments
  • Output Arguments
  1. Modules
  2. Metrics Module
  3. Metric Library

metricGet_Schwarzschild

PreviousmetricGet_ModifiedTimeNextMetric Functions

Last updated 1 year ago

Description

Create the Schwarzschild spacetime in Cartesian coordinates.

Schwarzschild Metric

The classic Schwarzschild metric given in pseudo-Cartesian coordinates is:

ds2=−(1−rsr)2dt2+(x21−rs/r+y2+z2)dx2r2+(x2+y21−rs/r+z2)dy2r2+(x2+y2+z21−rs/r)dz2r2+2rsr2(r−rs)(xydxdy+xzdxdz+yzdydz),\begin{aligned} d s^2= & -\left(1-\frac{r_s}{r}\right)^2 d t^2+\left(\frac{x^2}{1-r_s / r}+y^2+z^2\right) \frac{d x^2}{r^2}+\left(x^2+\frac{y^2}{1-r_s / r}+z^2\right) \frac{d y^2}{r^2} \\ & +\left(x^2+y^2+\frac{z^2}{1-r_s / r}\right) \frac{d z^2}{r^2}+\frac{2 r_s}{r^2\left(r-r_s\right)}(x y d x d y+x z d x d z+y z d y d z), \end{aligned}ds2=​−(1−rrs​​)2dt2+(1−rs​/rx2​+y2+z2)r2dx2​+(x2+1−rs​/ry2​+z2)r2dy2​+(x2+y2+1−rs​/rz2​)r2dz2​+r2(r−rs​)2rs​​(xydxdy+xzdxdz+yzdydz),​

where rsr_srs​ is the Schwarzschild radius.

For more details on the Schwarzschild metric please read the following reference (section 2.2.2) or any standard general relativity textbook:

Method

The metric is constructed using the Schwarzschild radius as a unitless pass-in value in Cartesian coordinates.

Syntax

[metric] = metricGet_Schwarzschild(gridSize,worldCenter,rs, gridScale)

Input Arguments

blue are required inputs.

orange are optional inputs with native default values.

blue are required inputs

Inputs
Format
Type
Description

gridSize

1x4 array

integer

The size of the world specified as:

worldCenter

1x4 array

double

rs

1x1 array

double

Schwarzschild radius, in unitless form.

gridScale

1x4 array

double

Unit scaling factor of the grid dimensions defined relative to gridSize. This determines the resolution of the grid along each dimension. Specified as:

The default value is [1, 1, 1, 1].

Output Arguments

Outputs
Format
Type
Description

metric

struct

object

Schwarzschild solution returned as the metric tensor object.

The center of the world, which defines the center of as a 4-vector, specified as:

[t,x,y,z][t, x, y, z][t,x,y,z]
rsr_srs​
[t,x,y,z][t,x,y,z][t,x,y,z]
[tscale,xscale,yscale,zscale][t_{scale}, x_{scale}, y_{scale}, z_{scale}][tscale​,xscale​,yscale​,zscale​]
LogoCatalogue of SpacetimesarXiv.org